Translate

Selasa, 20 Agustus 2013

PENDEKATAN OPEN ENDED


Pendekatan open-ended adalah "an instructional strategy that creates interest and stimulates creative mathematical activity in the classroom through students’ collaborative work. Lessons using open-ended problem solving emphasize the process of problem solving activities rather than focusing on the result" (Shimada &Becker, 1997; dan Foong, 2000). 
   
   Pendekatan open-ended prinsipnya sama dengan pembelajaran berbasis masalah yaitu suatu pendekatan pembelajaran yang dalam prosesnya dimulai dengan memberi suatu masalah kepada siswa. Bedanya Problem yang disajikan memiliki jawaban benar lebih dari satu. Problem yang memiliki jawaban benar lebih dari satu disebut problem tak lengkap atau problem open-ended atau problem terbuka. Contoh penerapan problem open-ended dalam kegiatan pembelajaran adalah ketika siswa diminta mengembangkan metode, cara, atau pendekatan yang berbeda dalam menjawab permasalahan yang diberikan dan bukan berorientasi pada jawaban akhir. Dihadapkan dengan problem open-ended  siswa tidak hanya mendapatkan jawaban tetapi lebih menekankan pada cara bagaimana sampai pada suatu jawaban. Pembelajaran dengan pendekatan open-ended biasanya dimulai dengan memberikan problem terbuka kepada siswa. Kegiatan pembelajaran membawa siswa dalam menjawab pertanyaan dengan banyak cara dan mungkin juga dengan banyak jawaban sehingga mengundang potensi intelektual dan pengalaman siswa dalam menemukan sesuatu yang baru.

  Tujuan pembelajaran melalui pendekatan open-ended  yaitu untuk membantu mengembangkan kegiatan kreatif  dan pola pikir matematis siswa melalui problem solving secara simultan. Dengan kata lain kegiatan kreatif dan pola pikir matematis siswa harus dikembangkan semaksimal mungkin sesuai dengan kemampuan setiap peserta didik agar aktivitas kelas yang penuh ide-ide matematika memacu kemampuan berfikir tingkat tinggi peserta didik.

  Pendekatan open-ended menjanjikan suaru kesempatan kepada siswa untuk menginvestigasi berbagai strategi dan cara yang diyakininya sesuai dengan mengelaborasi permasalahan. Tujuannya agar kemampuan berpikir matematika siswa dapat berkembang secara maksimal dan pada saat yang sama kegiatan-kegiatan kreatif dari setiap siswa dapat terkomunikasikan melalui proses belajar mengajar. Pokok  pikiran dari pembelajaran dengan open-ended yaitu pembelajaran yang membangun kegiatan interaktif antara matematika dan siswa sehingga mengundang siswa untuk menjawab permasalahan melalui berbagai strategi. Dengan kata lain pembelajaran matematika dengan pendekatan open-ended bersifat terbuka.

  Dalam pembelajaran matematika, pendekatan open-ended berarti memberikan kesempatan pada siswa untuk belajar melalui aktivitas-aktivitas real life dengan menyajikan fenomena alam seterbuka mungkin pada siswa. Bentuk penyajian fenomena dengan terbuka ini dapat dilakukan melalui pembelajaran yang berorientasi pada masalah atau soal atau tugas terbuka. Secara konseptual masalah terbuka dalam pembelajaran Matematika adalah masalah atau soal-soal Matematika yang dirumuskan sedimikian rupa, sehingga memiliki beberapa atau bahkan banyak solusi yang benar, dan terdapat banyak cara untuk mencapai solusi itu.

Pembelajaran dengan menggunakan pendekatan open-ended mengasumsikan tiga prinsip, yakni sebagai berikut :
1.      Related to the autonomy of student’ activities. If requires that we should appreciate the value of student’ activities for fear of being just non-interfering.
2.      Related to evolutionary and integral nature of mathematical knowledge. Content mathematics is theoretical and systematic. Therefore, the more essential certain knowledge is, the more comprehensively it derives analogical, special, and general knowledge.
3.       Related to teachers’ expedient decision-making in class. In mathematics class, teachers often encounter students’ unexpected ideas. In this bout, teachers have an important role to give the ideas full play, and to take into account that other students can also understand real amount of the unexpected ideas.
Jenis Masalah yang digunakan dalam pembelajaran melalui pendekatan open-ended ini adalah masalah yang bukan rutin yang bersifat terbuka. Sedangkan dasar keterbukaanya (openness) dapat diklasifikasikan kedalam tiga tipe, yakni : Process is open, end product are open dan ways to develop are open. Prosesnya terbuka maksudnya adalah tipe soal yang diberikan mempunyai banyak cara penyelesaian yang benar. Hasil akhir yang terbuka, maksudnya tipe soal yang diberikan mempunyai jawaban benar yang banyak (multiple), sedangkan cara pengembang lanjutannya terbuka, yaitu ketika siswa telah selesai menyelesaikan masalahnya, mereka dapat mengembangkan masalah baru dengan mengubah kondisi dari masalah yang pertama (asli). Dengan demikian pendekatan ini menyelesaikan masalah dan juga memunculkan masalah baru (from problem to problem).

Pembelajaran dengan pendekatan Open-ended mengharapkan siswa tidak hanya mendapatkan jawaban tetapi lebih menekankan pada proses pencarian suatu jawaban. Pendekatan open-ended menjanjikan suatu kesempatan kepada siswa untuk menginvestigasi berbagai strategi dan cara yang diyakininya sesuai dengan kemampuan mengelaborasi permasalahan. Tujuannya tiada lain adalah agar kemampuan berpikir matematika siswa dapat berkembang secara maksimal dan pada saat yang sama kegiatan-kegiatan kreatif dari setiap siswa terkomunikasi melalui proses belajar mengajar. Inilah yang menjadi pokok pikiran pembelajaran dengan open-ended, yaitu pembelajaran yang membangun kegiatan interaktifantara siswa dan matematika dan siswa sehingga mengundang siswa untuk menjawab permasalahan melalui berbagai strategi. Perlu digarisbawahi bahwa kegiatan matematik dan kegiatan siswa disebabkan terbuka jika memenuhi tiga aspek berikut.
1.    Kegiatan siswa harus terbuka
Yang dimaksud kegiatan siswa harus terbuka adalah kegiatan pembelajaran harus mengakomodasi kesempatan siswa untuk melakukan segala sesuatu secara bebas sesuai dengan kehendak mereka. Misalnya, guru memberikan permasalahan seperti berikut kepada siswa: Dengan menggunakan berbagai cara, hitunglah jumlah sepuluh bilangan ganjil pertama mulai dari satu! Dengan begitu siswa berkesampatan melakukan beragam aktivitas untuk menjawab permasalahan yang di berikan sesuai dengan pikiran dan kemampuannya.
2.    Kegiatan matematik adalah ragam berpikir
Kegiatan matematika adalah kegiatan yang di dalamnya terjadi proses pengabstraksian pengalaman nyata dalam kehidupan sehari-hari ke dalam dunia matematika atau sebaliknya. Pada dasarnya kegiatan matematik akan mengundang proses manipulasi dan manifestasi dalam dunia matematika.
3.    Kegiatan siswa dan kegiatan matematik merupakan satu kesatuan.
Kegiatan siswa dan kegiatan matematik dikatakan terbuka secara simultan dalam pembelajaran, jika kebutuhan dan berpikir matematik siswa terperhatikan guru melalui kegiatan-kegiatan matematik yang bermanfaat untuk menjawab permasalahan lainnya. Dengan kata lain, ketika siswa melakukan kegiatan matematika untuk memecahkan permasalahan yang diberikan, dengan sendirinya akan mendorong potensi mereka untuk melakukan kegiatan matematikpada tingkatan berpikir yang lebih tinggi. Dengan demikian, guru tidak perlu mengarahkan agar siswa memecahkan permasalahan dengan cara atu pola yang sudah ditentukan, sebab akan menghambat kebebasan berpikir siswa untuk menemukan cara baru menyelesaikan permasalahan.

Langkah penting yang harus dikembangkan guru dalam pembelajran melalui pendekatan open-ended adalah menyusun rencana pembelajaran. Ada beberapa hal yang perlu diperhatikan dalam pembelajaran sebelum problem tersebut disampaikan kepada siswa, yakni:
a.    Apakah masalah tersebut kaya dengan konsep-konsep matematika dan bernilai?
Masalah (problem) harus mendorong siswa untuk berfikir dari berbagai sudut pandang. Disamping itu juga harus kaya dengan konsep-konsep matematika yang sesuai untuk siswa yang berkemampuan tinggi maupun rendah dengan menggunakan berbagai strategi sesuai kemampuannya.
b.    Apakah level matematika dari masalah (problem) itu cocok untuk siswa?
Pada saat siswa menyelesaikan problem open-ended, mereka harus menggunakan pengetahuan dan keterampilan yang mereka punyai. Jika guru memprediksi bahwa persoalan itu diluar jangkauan siswa, maka problem itu harus diubah/diganti dengan problem yang berada dalam wilayah pemikiran siswa.
c.    Apakah problem itu mengundang pengembangan konsep matematika lebih lanjut?
Problem harus memiliki keterkaitan atau dihubungkan dengan konsep-konsep matematika yang lebih tinggi sehingga dapat memacu siswa untuk berfikir tingkat tinggi.
Apabila kita telah memformulasi problem mengikuti kriteria yang telah dikemukakan, langkah selanjutnya adalah mengembangkan rencana pembelajaran yang baik. Pada tahap ini hal-hal yang perlu diperhatikan adalah sebagai berikut:
a.    Tuliskan respon siswa yang diharapkan
Siswa diharapkan merespon problem open-ended dengan berbagai cara. Oleh karena itu guru harus menuliskan daftar antisipasi respon siswa terhadap problem. Karena kemampuan siswa dalam mengekspresikan idea tau pikirannya terbatas, mungkin mereka tidak akan mampu menjelaskan aktivitas mereka dalam memecahkan problem itu. Namun mungkin juga mereka mampu menjelaskan ide-ide matematika dengan cara berbeda. Dengan demikian antisipasi guru membuat banyak kemungkinan respon yang dikemukakan siswa menjadi penting dalam upaya mengarahkan dan membantu siswa memecahkan permasalahan sesuai dengan cara kemamapuan siswa.
b.    Tujuan dari problem itu diberikan harus jelas
Guru harus memahami peranan problem itu dalam keseluruhan rencana pembelajaran. Problem dapat diperlakukan sebagai topik yang independen, seperti dalam pengenalan konsep baru, atau sebagai rangkuman dari kegiatan belajar siswa. Dari pengalaman, problem open-ended efektif untuk pengenalan konsep baru atau dalam rangkuman dari kegiatan belajar.
c.    Sajikan problem semenarik mungkin.
Konteks permasalahan yang diberikan harus dikenal baik oleh siswa dan harus membangkitkan semangat intelektual. Karena problem open-ended memerlukan waktu untuk berfikir dan mempertimbangkan, maka problem itu harus mampu menarik perhatian siswa.
d.   Lengkapi prinsip posting problem sehingga siswa memahami dengan mudah maksud dari problem itu.
Problem harus diekspresikan sedemikian sehingga siswa dapat memahaminya dengan mudah dan menemukan pendekatan pemecahannya. Siswa dapat mengalami kesulitan jika eksplanasi problem terlalu ringkas. Hal ini dapat timbul karena guru bermaksud memberikan kebebasan yang cukup bagi siswa untuk memilih cara dan pendekatan pemecahan masalah atau bisa diakibatkan siswa memiliki sedikit atau bahkan tidak memiliki pengalaman dalam belajar karena terbiasa mengikuti petunjuk-petunjuk dari buku teks. Untuk menghindari kesulitan yang dihadapi siswa seperti ini, guru harus memberikan perhatian khusus menyajikan atau menampilkan problem.
e.    Berikan waktu yang cukup kepada siswa untukmengeksplorasi problem.
Kadang-kadang waktu yang diberikan tidak cukup dalam menyajikan problem pemecahannya, mendiskusikan pendekatan dan penyelesaian, dan merangkum apa yang telah siswa pelajari. Oleh karena itu guru harus memberikan waktu yang cukup kepada siswa untuk mengeksplorasi problem. Berdiskusi secara aktif anatara siswa dan antara siswa dengan guru merupakan interaksi yang sangat penting dalam pembelajaran open-ended. Guru dapat membuat dua periode waktu untuk satu problem open-ended. Periode pertama, siswa bekerja secara individual atau kelompok dalam memecahkan problem dan membuat rangkuman dari proses penemuan yang mereka lakukan. Kemudian periode kedua, digunakan untuk diskusi kelas mengenai strategi dan pemecahan serta penyimpulan dari guru, dari pengalaman pembelajaran seperti ini terbukti efektif.



Tidak ada komentar:

Posting Komentar